반경방향 자기비어링의 최적설계

Optimal Design for a Radial Magnetic Bearing

박 영진* (한양대 대학원), 정성종 (한양대 공대)
Y. J. Park* (Graduate School, HanYang Univ.), S. C. Chung (HanYang Univ.)

Key Words: Radial Magnetic Bearing(반경방향 자기비어링), Design Considerations(설계 고려사항), Design Variable(설계 변수), Constraints(제한조건), Optimal Design(최적설계), Branch & Bound Method(분단함소법)

ABSTRACT: This paper proposes an optimal design methodology for a radial magnetic bearing. The objective of the optimal design is to minimize bearing size. The constraints include the bearing load capacity, linearized bearing stiffness, the magnetic flux density, the heating equation and geometric relations. The design methodology not only help to achieve the design goals and better performance but specify the important dimensions for manufacturing.

1. 서론

 자기비어링(Magnetic Bearing)은 전자식의 전자 기기를 이용하여 기계적인 접촉과 응용 없이 회전체를 비접촉으로 지지함으로써 비어링의 역할을 하는 것으로서, 기계적인 접촉이 없기 때문에 마찰, 마모가 없어 예기치 않은 손실이 매우 적고 수명이 반영적이며 응용이나 청소의 필요성이 제거되므로 진공이나 무식성 대기 및 광범위한 온도에서는 사용이 가능하고 회전체의 최대허용속도가 매우 높다. 또한 자기비어링은 전자기력에 기생함으로써 회전체의 회전을 무리 높은 정밀도로 유지할 수 있고, 비어링의 강상 및 감쇠가 제어치의 개체(Gain)에 의해 조정되므로 임계속도 이상으로 안정된 가속이 가능하며, 운전 중회전체의 상태를 쉽게 모니터링할 수 있는 등 많은 장점을 가지고 있다. [1, 2]

 이러한 자기비어링은 초고속 전공경화, 고온 헬륨 중송기, 고속도 밀링, 인공위성용 모션팀, 터보 분자프로세스, 원심분리기, 터보 발전기 등에 적용되어, 산업전반에 걸쳐 각종 회전기관의 고성능화를 선도하고 있다. [3, 4]

 그러나 자기비어링은 특수비어링의 하나로서, 그 설계에는 회전체, 전기적인 제어장치 등이 함께 고려되어야 하므로, 기존의 구름비어링과는 달리 규격화가 불가능하다. 따라서 자기비어링의 설계 및 제작은, 자기비어링이 작동하는 회전체-비어링시스템의 목적 및 요구되는 성능에 따라 개별적으로 시행되고 있다.


 본 연구에서는 일반적인 최적설계방법을 사용하여, 자기비어링이 작동하는 시스템의 요구 및 자기 비어링의 성능한계 등의 성능평가를 만족하는, 가장 작은 크기의 반경방향 자기비어링을 설계하였다. 반경방향 자기비어링의 최적설계를 위해, 그의 구성 및 형상을 설계하고, 비어링중, 비어링강성, 토머즈속도, 발열 그리고 레이지 형상의 기하학적 관계 등 설계 고려사항들을 수식화하였다. 이를 바탕으로, 자기비어링의 크기를 목적함수로 하는 제한조건을 갖는 최적설계 문제로 정식화하였다.